Recently, a Monte Carlo approach was proposed for processing highly redundant continuous frames. In this paper we present and analyze applications of this new theory. The computational complexity of the Monte Carlo method relies on the continuous frame being so called linear volume discretizable (LVD). The LVD property means that the number of samples in the coefficient space required by the Monte Carlo method is proportional to the resolution of the discrete signal. We show in this paper that the continuous wavelet transform (CWT) and the localizing time-frequency transform (LTFT) are LVD. The LTFT is a time-frequency representation based on a 3D time-frequency space with a richer class of time-frequency atoms than classical time-frequency transforms like the short time Fourier transform (STFT) and the CWT. Our analysis proves that performing signal processing with the LTFT has the same asymptotic complexity as signal processing with the STFT and CWT (based on FFT), even though the coefficient space of the LTFT is higher dimensional.


翻译:最近,为处理非常冗余的连续框架,提出了蒙特卡洛方法。我们在本文件中介绍和分析这一新理论的应用。蒙特卡洛方法的计算复杂性依赖于连续框架,即所谓的线性体积可分离(LVD)。LVD属性意味着蒙特卡洛方法所要求的系数空间样本数量与离散信号的分辨率成比例。我们在本文件中显示,连续波盘变换(CWT)和本地化时间频率变换(LTFT)是LVD。LTFT是一个基于3D时频空间的时间频率代表,比传统的时频变换(Fourier变换(STFT)和CWT(CWT)等时间频率变换(LTFT)要多得多。我们的分析证明,用LTFT进行信号处理与STFT和CWT(以FFT为基础)的信号处理一样复杂。即使LTFTFT的系数空间的尺寸更高。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
51+阅读 · 2021年5月19日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
80+阅读 · 2020年6月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年12月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年5月19日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
80+阅读 · 2020年6月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员