This paper studies weakly supervised domain adaptation(WSDA) problem, where we only have access to the source domain with noisy labels, from which we need to transfer useful information to the unlabeled target domain. Although there have been a few studies on this problem, most of them only exploit unidirectional relationships from the source domain to the target domain. In this paper, we propose a universal paradigm called GearNet to exploit bilateral relationships between the two domains. Specifically, we take the two domains as different inputs to train two models alternately, and asymmetrical Kullback-Leibler loss is used for selectively matching the predictions of the two models in the same domain. This interactive learning schema enables implicit label noise canceling and exploits correlations between the source and target domains. Therefore, our GearNet has the great potential to boost the performance of a wide range of existing WSDL methods. Comprehensive experimental results show that the performance of existing methods can be significantly improved by equipping with our GearNet.
翻译:本文研究的是监管不力的域适应(WSDA)问题, 在那里,我们只能以吵闹的标签进入源域, 我们需要从中将有用的信息转移到未贴标签的目标域。 虽然已经对这个问题进行了一些研究, 但大多数研究只是利用源域到目标域的单向关系。 在本文中, 我们提出了一个称为 GearNet 的普遍范例, 以利用两个域之间的双边关系。 具体地说, 我们把这两个域视为不同的投入, 来替代地培训两个模型, 而不对称的 Kullback- Leiber 损失则用来有选择地匹配同一域内两种模型的预测。 这种互动的学习模式使得隐含标签噪音可以取消并利用源域和目标域与目标域之间的相互关系。 因此, 我们的GearNet 具有巨大的潜力, 来提高现有的多种 WSDL 方法的性能。 全面实验结果显示, 通过装备我们的 GearNet, 可以大大改进现有方法的性能。