In real-world applications of influence maximization (IM), the network structure is often unknown. In this case, we may identify the most influential seed nodes by exploring only a part of the underlying network given a small budget for node queries. Motivated by the fact that collecting node metadata is more cost-effective than investigating the relationship between nodes via queried nodes, we develop IM-META, an end-to-end solution to IM in networks with unknown topology by retrieving information from both queries and node metadata. However, using such metadata to aid the IM process is not without risk due to the noisy nature of metadata and uncertainties in connectivity inference. To tackle these challenges, we formulate an IM problem that aims to find two sets, i.e., seed nodes and queried nodes. We propose an effective method that iteratively performs three steps: 1) we learn the relationship between collected metadata and edges via a Siamese neural network model, 2) we select a number of inferred influential edges to construct a reinforced graph used for discovering an optimal seed set, and 3) we identify the next node to query by maximizing the inferred influence spread using a topology-aware ranking strategy. By querying only 5% of nodes, IM-META reaches 93% of the upper bound performance.
翻译:在影响最大化的现实应用(IM)中,网络结构往往不为人知。在此情况下,我们可能通过只探索基础网络的一部分,为节点查询提供少量预算,来确定最有影响力的种子节点。基于收集节点元数据比通过查询节点调查节点之间的关系更具成本效益这一事实,我们开发IM-META,这是通过检索查询和节点元数据获得的信息,在具有未知地形学的网络中对IM的端至端解决方案。然而,由于元数据的吵闹性质和连接推断中的不确定性,使用这种元数据帮助IM进程并非没有风险。为了应对这些挑战,我们设计了一个IM问题,目的是找到两套节点,即种子节点和询问节点。我们提出了一种有效的方法,通过Siamees神经网络模型,反复运行三个步骤,我们学习所收集的元数据和边缘之间的关系,2 我们选择一些有影响力的推论边缘,以构建一个用于发现最佳种子集集的强化图表,3)我们用下个节点来确定下一个节点的战略,即种子和最高节点的排序,我们通过最优化的排序来确定最高等级。