In calculating integral or discrete transforms, use has been made of fast algorithms for multiplying vectors by matrices whose elements are specified as values of special (Chebyshev, Legendre, Laguerre, etc.) functions. The currently available fast algorithms are several orders of magnitude less efficient than the fast Fourier transform. To achieve higher efficiency, a convenient general approach for calculating matrix-vector products for some class of problems is proposed. A series of fast simple-structure algorithms developed under this approach can be efficiently implemented with software based on modern microprocessors. The method has a pre-computation complexity of $O(N^2 \log N)$ and an execution complexity of $O(N \log N)$. The results of computational experiments with the algorithms show that these procedures can decrease the calculation time by several orders of magnitude compared with a conventional direct method of matrix-vector multiplication.
翻译:在计算整体或离散变异时,使用快速算法来计算乘量矢量,其要素被指定为特殊函数(Chebyshev、Tulture、Laguerre等)值的矩阵对乘量矢量作了快速算法。现有快速算法比快速傅里叶变异低几个数量级的效率。为了实现更高的效率,提议了一种方便的通用方法,用于计算某类问题的矩阵-矢量产品。在这种方法下开发的一系列快速简单结构算法可以通过基于现代微处理器的软件有效加以实施。该方法的计算前复杂性为$O(N%2\log N$),执行复杂性为$O(N\log N)。用算法进行的计算实验结果显示,与传统的矩阵-动量倍增直接法相比,这些程序可以减少数个数量级的计算时间。