Uncertainty estimation in deep learning has recently emerged as a crucial area of interest to advance reliability and robustness in safety-critical applications. While there have been many proposed methods that either focus on distance-aware model uncertainties for out-of-distribution detection or on input-dependent label uncertainties for in-distribution calibration, both of these types of uncertainty are often necessary. In this work, we propose the HetSNGP method for jointly modeling the model and data uncertainty. We show that our proposed model affords a favorable combination between these two types of uncertainty and thus outperforms the baseline methods on some challenging out-of-distribution datasets, including CIFAR-100C, ImageNet-C, and ImageNet-A. Moreover, we propose HetSNGP Ensemble, an ensembled version of our method which additionally models uncertainty over the network parameters and outperforms other ensemble baselines.
翻译:深层学习中的不确定性估计最近成为提高安全关键应用的可靠性和稳健性的一个重要关注领域,虽然有许多建议的方法,既注重用于分配外检测的远程觉察模型不确定性,又注重在分配校准方面依赖投入的标签不确定性,但这两种不确定性往往都是必要的。在这项工作中,我们提议采用HETSNGP方法,共同建模模型和数据不确定性。我们表明,我们提议的模型在这两种类型的不确定性之间提供了有利的组合,从而超过了一些具有挑战性的分配外数据集的基准方法,包括CIFAR-100C、图像网-C和图像网-A。此外,我们提议采用HetSNGP Ensemble,这是我们方法的组合版本,用来进一步模拟网络参数的不确定性,并超越了其他组合基线。