In this manuscript we derive the optimal out-of-sample causal predictor for a linear system that has been observed in $k+1$ within-sample environments. In this model we consider $k$ shifted environments and one observational environment. Each environment corresponds to a linear structural equation model (SEM) with its own shift and noise vector, both in $L^2$. The strength of the shifts can be put in a certain order, and we may therefore speak of all shifts that are less or equally strong than a given shift. We consider the space of all shifts are $\gamma$ times less or equally strong than any weighted average of the observed shift vectors with weights on the unit sphere. For each $\beta\in\mathbb{R}^p$ we show that the supremum of the risk functions $R_{\tilde{A}}(\beta)$ over $\tilde{A}\in C^\gamma$ has a worst-risk decomposition into a (positive) linear combination of risk functions, depending on $\gamma$. We then define the causal regularizer, $\beta_\gamma$, as the argument $\beta$ that minimizes this risk. The main result of the paper is that this regularizer can be consistently estimated with a plug-in estimator outside a set of zero Lebesgue measure in the parameter space. A practical obstacle for such estimation is that it involves the solution of a general degree polynomial which cannot be done explicitly. Therefore we also prove that an approximate plug-in estimator using the bisection method is also consistent. An interesting by-product of the proof of the main result is that the plug-in estimation of the argmin of the maxima of a finite set of quadratic risk functions is consistent outside a set of zero Lebesgue measure in the parameter space.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月16日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员