We study the complexity of computing majority as a composition of local functions: \[ \text{Maj}_n = h(g_1,\ldots,g_m), \] where each $g_j :\{0,1\}^{n} \to \{0,1\}$ is an arbitrary function that queries only $k \ll n$ variables and $h : \{0,1\}^m \to \{0,1\}$ is an arbitrary combining function. We prove an optimal lower bound of \[ m \ge \Omega\left( \frac{n}{k} \log k \right) \] on the number of functions needed, which is a factor $\Omega(\log k)$ larger than the ideal $m = n/k$. We call this factor the composition overhead; previously, no superconstant lower bounds on it were known for majority. Our lower bound recovers, as a corollary and via an entirely different proof, the best known lower bound for bounded-width branching programs for majority (Alon and Maass '86, Babai et al. '90). It is also the first step in a plan that we propose for breaking a longstanding barrier in lower bounds for small-depth boolean circuits. Novel aspects of our proof include sharp bounds on the information lost as computation flows through the inner functions $g_j$, and the bootstrapping of lower bounds for a multi-output function (Hamming weight) into lower bounds for a single-output one (majority).
翻译:我们用本地函数的构成来研究计算多数的复杂性: \\\\ text{ Maj ⁇ n = h( g_ 1,\ ldots, g_ m),\, 计算多数的复杂性是一个任意的函数, 仅查询 $k\ ll n 变量和 $: @ 0, 1 ⁇ m\ \ to \ ⁇ 0, 1 ⁇ ⁇ 是一个任意的组合函数。 事实证明, 在需要的函数数量上, 每一个$_ j : @ 0. 1\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\ \ \ \ \ \ \ \ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \