Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years, however designing accurate and robust segmentation models for lung tissue is challenging due to the variations in shape, size, and orientation. Additionally, medical image artifacts and noise can affect lung tissue segmentation and degrade the accuracy of downstream analysis. The practicality of current deep learning methods for lung tissue segmentation is limited as they require significant computational resources and may not be easily deployable in clinical settings. This paper presents a fully automatic method that identifies the lungs in three-dimensional (3D) pulmonary CT images using deep networks and transfer learning. We introduce (1) a novel 2.5-dimensional image representation from consecutive CT slices that succinctly represents volumetric information and (2) a U-Net architecture equipped with pre-trained InceptionV3 blocks to segment 3D CT scans while maintaining the number of learnable parameters as low as possible. Our method was quantitatively assessed using one public dataset, LUNA16, for training and testing and two public datasets, namely, VESSEL12 and CRPF, only for testing. Due to the low number of learnable parameters, our method achieved high generalizability to the unseen VESSEL12 and CRPF datasets while obtaining superior performance over Luna16 compared to existing methods (Dice coefficients of 99.7, 99.1, and 98.8 over LUNA16, VESSEL12, and CRPF datasets, respectively). We made our method publicly accessible via a graphical user interface at medvispy.ee.kntu.ac.ir.


翻译:在计算机断层成像(CT)图像中对肺组织进行分割是大多数肺部图像分析应用程序的先决条件。近年来,使用深度学习的语义分割方法表现出一流的性能,然而为肺组织设计准确和强健的分割模型是具有挑战性的,因为形状,大小和方向变化很大。此外,医学图像中的伪影和噪声可能影响肺组织分割,并降低下游分析的准确性。目前用于肺组织分割的深度学习方法的实用性受到限制,因为它们需要大量的计算资源,并且在临床环境中可能不容易部署。本文提出了一种完全自动化的方法,使用深度网络和迁移学习在三维肺部 CT 图像中识别肺部。我们引入了一种新颖的 2.5D 图像表示方法,该方法从连续 CT 切片中简明地表示容积信息,并且使用具有预先训练的 InceptionV3 块的 U-Net 架构来在维持尽可能少的可学习参数的同时分割 3D CT 扫描。我们使用一个公共数据集 LUNA16 进行量化评估的方法用于训练和测试,而使用两个公共数据集 VESSEL12 和 CRPF 仅用于测试。由于可学习参数的数量很少,我们的方法在未见过的 VESSEL12 和 CRPF 数据集上达到了高通用性,而相对于现有方法(Dice 系数在 LUNA16,VESSEL12 和 CRPF 数据集上分别为 99.7、99.1 和 98.8),在 Luna16 上取得了卓越的性能。我们通过 medvispy.ee.kntu.ac.ir 提供了一个可公开访问的图形用户界面来使用我们的方法。

1
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
CVPR2022 | 一种适用于密集场景的渐进式端到端目标检测器
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
17+阅读 · 2020年11月15日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
CVPR2022 | 一种适用于密集场景的渐进式端到端目标检测器
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员