Due to the sparsity and irregularity of the point cloud data, methods that directly consume points have become popular. Among all point-based models, graph convolutional networks (GCN) lead to notable performance by fully preserving the data granularity and exploiting point interrelation. However, point-based networks spend a significant amount of time on data structuring (e.g., Farthest Point Sampling (FPS) and neighbor points querying), which limit the speed and scalability. In this paper, we present a method, named Grid-GCN, for fast and scalable point cloud learning. Grid-GCN uses a novel data structuring strategy, Coverage-Aware Grid Query (CAGQ). By leveraging the efficiency of grid space, CAGQ improves spatial coverage while reducing the theoretical time complexity. Compared with popular sampling methods such as Farthest Point Sampling (FPS) and Ball Query, CAGQ achieves up to 50X speed-up. With a Grid Context Aggregation (GCA) module, Grid-GCN achieves state-of-the-art performance on major point cloud classification and segmentation benchmarks with significantly faster runtime than previous studies. Remarkably, Grid-GCN achieves the inference speed of 50fps on ScanNet using 81920 points per scene as input.


翻译:由于点云数据的广度和不规则性,直接消耗点的方法变得十分流行。在所有点基模型中,图变网络(GCN)通过充分保存数据颗粒度和利用点的相互关系而取得显著的绩效。然而,基于点的网络在数据结构(例如,远点抽样和邻接点查询)上花费了大量时间,限制了速度和可缩放性。在本文中,我们提出了一个名为Grid-GCN的快速和可缩放点云学习方法。Grid-GCN采用新的数据结构战略,即覆盖-软件网格查询(CAGQ)。通过利用电网空间的效率,CAGQ改进了空间覆盖,同时降低了理论复杂性。与流行的取样方法相比,如Farthest点抽样和Ball Query, CAGQ达到高达50x的速度。在Grid Clogation(GCA)模块中,GGCN网络网络使用新的数据结构化战略,即覆盖软件网-软件网格网格网格网格网网网网格网格网(Query (CAGQQ) 通过利用前点的云路速度大大加快进行50GSlod-Creal-Creal-Syal-reax-Syal-regl) 的升级,在前点上实现了速度上,利用了50点的云端点的云端点,实现了速度研究,在达到了50-cal-S-S-S-S-S-S-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-s-cal-cal-cal-cal-cal-cal-s-s-s-sal-sal-cal-cal-cal-cal-cal-cal-cal-cal-sal-cal-sal-sal-lal-sal-sal-lal-s-lal-lal-lal-lal-l-lal-lal-lal-lal-lal-Sal-Sal-sal-lal-lal-lal-lal-lal-lal-lal

1
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
41+阅读 · 2020年11月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员