We convert the Chinese medical text attributes extraction task into a sequence tagging or machine reading comprehension task. Based on BERT pre-trained models, we have not only tried the widely used LSTM-CRF sequence tagging model, but also other sequence models, such as CNN, UCNN, WaveNet, SelfAttention, etc, which reaches similar performance as LSTM+CRF. This sheds a light on the traditional sequence tagging models. Since the aspect of emphasis for different sequence tagging models varies substantially, ensembling these models adds diversity to the final system. By doing so, our system achieves good performance on the task of Chinese medical text attributes extraction (subtask 2 of CCKS 2019 task 1).


翻译:我们把中国医学文本属性提取任务转换成一个序列标记或机器阅读理解任务。根据BERT预先培训的模型,我们不仅尝试了广泛使用的LSTM-CRF序列标记模型,而且尝试了其他序列模型,如CNN、UCNN、WaveNet、自控等,这些模型的性能与LSTM+CRF相似。这为传统序列标记模型提供了线索。由于不同序列标记模型的重点差异很大,这些模型的组合为最终系统增加了多样性。通过这样做,我们的系统在中国医学文本属性提取任务(CCKS 2019任务1的子任务2)上取得了良好的业绩。

1
下载
关闭预览

相关内容

属性抽取,知识图谱中的知识抽取中的重要组成部分。
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
3+阅读 · 2019年9月5日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
3+阅读 · 2019年3月1日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员