Alzheimer's disease (AD) is a progressive neurological disorder, meaning that the symptoms develop gradually throughout the years. It is also the main cause of dementia, which affects memory, thinking skills, and mental abilities. Nowadays, researchers have moved their interest towards AD detection from spontaneous speech, since it constitutes a time-effective procedure. However, existing state-of-the-art works proposing multimodal approaches do not take into consideration the inter- and intra-modal interactions and propose early and late fusion approaches. To tackle these limitations, we propose deep neural networks, which can be trained in an end-to-end trainable way and capture the inter- and intra-modal interactions. Firstly, each audio file is converted to an image consisting of three channels, i.e., log-Mel spectrogram, delta, and delta-delta. Next, each transcript is passed through a BERT model followed by a gated self-attention layer. Similarly, each image is passed through a Swin Transformer followed by an independent gated self-attention layer. Acoustic features are extracted also from each audio file. Finally, the representation vectors from the different modalities are fed to a tensor fusion layer for capturing the inter-modal interactions. Extensive experiments conducted on the ADReSS Challenge dataset indicate that our introduced approaches obtain valuable advantages over existing research initiatives reaching Accuracy and F1-score up to 86.25% and 85.48% respectively.


翻译:阿尔茨海默氏病(AD)是一种渐进式神经系统疾病,这意味着症状在多年中逐渐发展。它也是痴呆症的主要原因,它影响记忆、思维技能和智力。如今,研究人员已经将兴趣从自发言论转向自动检测,因为它是一个具有时间效力的程序。然而,现有最先进的提议多式方法的作品并没有考虑到不同模式之间和内部的互动,也没有提出早期和晚期的融合方法。为了克服这些限制,我们建议建立深层的神经网络,这些网络可以接受端到端的训练,并捕捉不同模式之间和内部的互动。首先,每个音频文件都转换成由三种渠道组成的图像,即:log-Mel光谱、delta和delta-delta。接下来,每部记录都通过BERT模型传递,然后是封闭式的自我保存层。同样,每个图像都通过Swin变形器传递,随后有一个独立的封闭式自我保护层。每个音频特性也从每个音频文档中提取出。最后,每个音频文档都转换成由三个频道组成的图像,即log-M-mal-crealalalalalal adexal Exalalalalalalalalal exal exal exal astional 。最后,从我们进行了一次的变换取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取取了不同的方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员