Learning with symmetric positive definite (SPD) matrices has many applications in machine learning. Consequently, understanding the Riemannian geometry of SPD matrices has attracted much attention lately. A particular Riemannian geometry of interest is the recently proposed Bures-Wasserstein (BW) geometry which builds on the Wasserstein distance between the Gaussian densities. In this paper, we propose a novel generalization of the BW geometry, which we call the GBW geometry. The proposed generalization is parameterized by a symmetric positive definite matrix $\mathbf{M}$ such that when $\mathbf{M} = \mathbf{I}$, we recover the BW geometry. We provide a rigorous treatment to study various differential geometric notions on the proposed novel generalized geometry which makes it amenable to various machine learning applications. We also present experiments that illustrate the efficacy of the proposed GBW geometry over the BW geometry.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月29日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员