This paper forges a strong connection between two seemingly unrelated forecasting problems: incentive-compatible forecast elicitation and forecast aggregation. Proper scoring rules are the well-known solution to the former problem. To each such rule s we associate a corresponding method of aggregation, mapping expert forecasts and expert weights to a "consensus forecast," which we call *quasi-arithmetic (QA) pooling* with respect to s. We justify this correspondence in several ways: - QA pooling with respect to the two most well-studied scoring rules (quadratic and logarithmic) corresponds to the two most well-studied forecast aggregation methods (linear and logarithmic). - Given a scoring rule s used for payment, a forecaster agent who sub-contracts several experts, paying them in proportion to their weights, is best off aggregating the experts' reports using QA pooling with respect to s, meaning this strategy maximizes its worst-case profit (over the possible outcomes). - The score of an aggregator who uses QA pooling is concave in the experts' weights. As a consequence, online gradient descent can be used to learn appropriate expert weights from repeated experiments with low regret. - The class of all QA pooling methods is characterized by a natural set of axioms (generalizing classical work by Kolmogorov on quasi-arithmetic means).


翻译:本文在两个似乎无关紧要的预测问题之间建立了紧密的联系: 奖励- 可比预测引出和预测汇总。 适当的评分规则是众所周知的解决前一个问题的办法。 对于其中的每一项规则,我们把相应的汇总方法、 绘制专家预测和专家权重与“ 协商一致预测”联系起来, 我们称之为“ qusi-arithmatic (QA) 集合 ” 。 我们以几种方式证明这一对应: - QA 集合, 与两个最受研究最深的评分规则( 赤道和对数法) 相对应。 正确的评分规则是两种最受研究最深的预测汇总方法( 线性和对数法 ) 。 对于每一项规则,我们使用评分规则来付款, 将相应的汇总、 绘制专家预测的预测方法与“ 协商一致” 相挂钩。 我们以几种方式证明, QA 集合, 意味着这一战略最大限度地增加其最坏的利润( 相对于可能的结果 ) 。 使用 QA 集合 的评分, 是在专家的相对级加权 的评分中 。 。, 以 惯性 的 的 惯性 的 的 方法 以 排序 的 的 的 。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
42+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
论文浅尝 | XQA:一个跨语言开放域问答数据集
开放知识图谱
25+阅读 · 2019年9月11日
已删除
将门创投
11+阅读 · 2019年8月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年4月4日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
42+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
论文浅尝 | XQA:一个跨语言开放域问答数据集
开放知识图谱
25+阅读 · 2019年9月11日
已删除
将门创投
11+阅读 · 2019年8月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员