Let $X$ be a linear diffusion taking values in $(\ell,r)$ and consider the standard Euler scheme to compute an approximation to $\mathbb{E}[g(X_T)\mathbf{1}_{[T<\zeta]}]$ for a given function $g$ and a deterministic $T$, where $\zeta=\inf\{t\geq 0: X_t \notin (\ell,r)\}$. It is well-known since \cite{GobetKilled} that the presence of killing introduces a loss of accuracy and reduces the weak convergence rate to $1/\sqrt{N}$ with $N$ being the number of discretisatons. We introduce a drift-implicit Euler method to bring the convergence rate back to $1/N$, i.e. the optimal rate in the absence of killing, using the theory of recurrent transformations developed in \cite{rectr}. Although the current setup assumes a one-dimensional setting, multidimensional extension is within reach as soon as a systematic treatment of recurrent transformations is available in higher dimensions.


翻译:$X$ 是一个以$( ell, r) 计算的线性扩散值, 并考虑标准的 Euler 方案, 计算一个函数的近似值$\ mathbb{E} [g( X_ T)\mathbf{1}[T ⁇ zeta] $g$和确定值$T$, 其中$Zetata ⁇ inf ⁇ t\ge 0: X_ t\ notin ( ell, r) $。 自\ cite{ GobetKilled} 以来众所周知, 杀戮的存在导致准确性损失, 并将弱的趋同率降低到$/ sqrt{N} $( 美元是离散数) 。 我们采用了一种漂浮不透明 Euler 方法, 将趋同率恢复到$/ N$, 即不杀人的最佳比率。 尽管当前设置假设的一维度设定值更高, 但多维扩展率将很快达到, 系统处理的经常变化范围即将达到。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【经典书】Linux UNIX系统编程手册,1554页pdf
专知会员服务
46+阅读 · 2021年2月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
A flexible split-step scheme for MV-SDEs
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员