Let $X$ be a linear diffusion taking values in $(\ell,r)$ and consider the standard Euler scheme to compute an approximation to $\mathbb{E}[g(X_T)\mathbf{1}_{[T<\zeta]}]$ for a given function $g$ and a deterministic $T$, where $\zeta=\inf\{t\geq 0: X_t \notin (\ell,r)\}$. It is well-known since \cite{GobetKilled} that the presence of killing introduces a loss of accuracy and reduces the weak convergence rate to $1/\sqrt{N}$ with $N$ being the number of discretisatons. We introduce a drift-implicit Euler method to bring the convergence rate back to $1/N$, i.e. the optimal rate in the absence of killing, using the theory of recurrent transformations developed in \cite{rectr}. Although the current setup assumes a one-dimensional setting, multidimensional extension is within reach as soon as a systematic treatment of recurrent transformations is available in higher dimensions.
翻译:$X$ 是一个以$( ell, r) 计算的线性扩散值, 并考虑标准的 Euler 方案, 计算一个函数的近似值$\ mathbb{E} [g( X_ T)\mathbf{1}[T ⁇ zeta] $g$和确定值$T$, 其中$Zetata ⁇ inf ⁇ t\ge 0: X_ t\ notin ( ell, r) $。 自\ cite{ GobetKilled} 以来众所周知, 杀戮的存在导致准确性损失, 并将弱的趋同率降低到$/ sqrt{N} $( 美元是离散数) 。 我们采用了一种漂浮不透明 Euler 方法, 将趋同率恢复到$/ N$, 即不杀人的最佳比率。 尽管当前设置假设的一维度设定值更高, 但多维扩展率将很快达到, 系统处理的经常变化范围即将达到。