Deep recurrent neural networks perform well on sequence data and are the model of choice. However, it is a daunting task to decide the structure of the networks, i.e. the number of layers, especially considering different computational needs of a sequence. We propose a layer flexible recurrent neural network with adaptive computation time, and expand it to a sequence to sequence model. Different from the adaptive computation time model, our model has a dynamic number of transmission states which vary by step and sequence. We evaluate the model on a financial data set and Wikipedia language modeling. Experimental results show the performance improvement of 7\% to 12\% and indicate the model's ability to dynamically change the number of layers along with the computational steps.


翻译:深层的经常性神经网络在序列数据方面表现良好,是选择的模式。然而,决定网络的结构,即层数,是一项艰巨的任务,特别是考虑到一个序列的不同计算需要。我们建议一个具有适应性计算时间的多层灵活的循环神经网络,并将其扩展为序列模型的顺序。不同于适应性计算时间模型,我们的模型有动态的传输状态,它们因步骤和顺序而异。我们评估财务数据集和维基百科语言模型的模型。实验结果显示7 ⁇ 至12 ⁇ 的性能改进,并显示模型在计算步骤的同时动态地改变层数的能力。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
3+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
3+阅读 · 2018年3月14日
Top
微信扫码咨询专知VIP会员