Neural language representation models such as BERT, pre-trained on large-scale unstructured corpora lack explicit grounding to real-world commonsense knowledge and are often unable to remember facts required for reasoning and inference. Natural Language Inference (NLI) is a challenging reasoning task that relies on common human understanding of language and real-world commonsense knowledge. We introduce a new model for NLI called External Knowledge Enhanced BERT (ExBERT), to enrich the contextual representation with real-world commonsense knowledge from external knowledge sources and enhance BERT's language understanding and reasoning capabilities. ExBERT takes full advantage of contextual word representations obtained from BERT and employs them to retrieve relevant external knowledge from knowledge graphs and to encode the retrieved external knowledge. Our model adaptively incorporates the external knowledge context required for reasoning over the inputs. Extensive experiments on the challenging SciTail and SNLI benchmarks demonstrate the effectiveness of ExBERT: in comparison to the previous state-of-the-art, we obtain an accuracy of 95.9% on SciTail and 91.5% on SNLI.


翻译:自然语言推断(NLI)是一项具有挑战性的推理任务,它依赖于人类对语言和现实世界常识知识的共同理解。我们为NLI引入了一个新的模型,称为外部知识增强BERT(ExBERT),以外部知识来源的现实世界常识知识丰富背景代表性,并加强BERT的语言理解和推理能力。ExBERT充分利用了从BERT获得的背景文字表述,利用它们从知识图表中检索相关外部知识并编码检索到的外部知识。我们的模式适应了对投入进行推理所需的外部知识背景。关于挑战性SciTail和SNSLI基准的广泛实验表明ExBERT的有效性:与以往的状态相比,我们获得了SciTail的准确率95.9%和SnLI的准确率9.5%。

1
下载
关闭预览

相关内容

BERT全称Bidirectional Encoder Representations from Transformers,是预训练语言表示的方法,可以在大型文本语料库(如维基百科)上训练通用的“语言理解”模型,然后将该模型用于下游NLP任务,比如机器翻译、问答。
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
12+阅读 · 2019年2月28日
Arxiv
6+阅读 · 2018年11月1日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员