Humanitarian crises, such as the 2014 West Africa Ebola epidemic, challenge information management and thereby threaten the digital resilience of the responding organizations. Crisis information management (CIM) is characterised by the urgency to respond despite the uncertainty of the situation. Coupled with high stakes, limited resources and a high cognitive load, crises are prone to induce biases in the data and the cognitive processes of analysts and decision-makers. When biases remain undetected and untreated in CIM, they may lead to decisions based on biased information, increasing the risk of an inefficient response. Literature suggests that crisis response needs to address the initial uncertainty and possible biases by adapting to new and better information as it becomes available. However, we know little about whether adaptive approaches mitigate the interplay of data and cognitive biases. We investigated this question in an exploratory, three-stage experiment on epidemic response. Our participants were experienced practitioners in the fields of crisis decision-making and information analysis. We found that analysts fail to successfully debias data, even when biases are detected, and that this failure can be attributed to undervaluing debiasing efforts in favor of rapid results. This failure leads to the development of biased information products that are conveyed to decision-makers, who consequently make decisions based on biased information. Confirmation bias reinforces the reliance on conclusions reached with biased data, leading to a vicious cycle, in which biased assumptions remain uncorrected. We suggest mindful debiasing as a possible counter-strategy against these bias effects in CIM.


翻译:2014年西非埃博拉疫情等人道主义危机挑战信息管理,从而威胁到应对组织的数字复原力。危机信息管理的特点是,尽管情况不确定,但迫切需要作出反应。危机信息管理(CIM)的特点是,尽管情况不确定,但危机信息管理(CIM)的特点是,迫切需要作出反应。由于利害关系大、资源有限和认知负荷大,危机容易在数据以及分析者和决策者的认知过程中产生偏见。当偏见在CIM中仍然未被发现和未处理时,可能导致基于偏差的信息做出决策,增加反应效率低下的风险。文献表明,危机应对需要通过适应新的和更好的信息来应对最初的不确定性和可能的偏差。然而,我们对于适应性做法是否减轻数据和认知偏差的相互作用知之甚少。我们通过探索性、三阶段的流行病应对实验来调查这一问题。我们的参与者在危机决策和信息分析领域经验丰富的实践者。我们发现,即使发现偏差,分析者也无法成功获得偏差数据,而这种失败可归因于低估对支持快速结果的努力的贬低偏见。但这种失败导致偏差信息偏差的偏差,因此导致形成偏差信息偏差的偏差,从而导致不稳性判断结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员