Natural Language Inference (NLI) or Recognizing Textual Entailment (RTE) aims at predicting the relation between a pair of sentences (premise and hypothesis) as entailment, contradiction or semantic independence. Although deep learning models have shown promising performance for NLI in recent years, they rely on large scale expensive human-annotated datasets. Semi-supervised learning (SSL) is a popular technique for reducing the reliance on human annotation by leveraging unlabeled data for training. However, despite its substantial success on single sentence classification tasks where the challenge in making use of unlabeled data is to assign "good enough" pseudo-labels, for NLI tasks, the nature of unlabeled data is more complex: one of the sentences in the pair (usually the hypothesis) along with the class label are missing from the data and require human annotations, which makes SSL for NLI more challenging. In this paper, we propose a novel way to incorporate unlabeled data in SSL for NLI where we use a conditional language model, BART to generate the hypotheses for the unlabeled sentences (used as premises). Our experiments show that our SSL framework successfully exploits unlabeled data and substantially improves the performance of four NLI datasets in low-resource settings. We release our code at: https://github.com/msadat3/SSL_for_NLI.
翻译:自然语言自然推断(NLI) 或确认文本细节( RTE) 旨在预测一对判决( 预言和假设)作为必然、 矛盾或语义独立的对应词( RTE) 之间的关系。 虽然深层次的学习模型近年来显示NLI有良好的表现,但它们依赖大规模昂贵的人类附加注释数据集。 半监督的学习( SSL) 是一种常用的方法, 利用未贴标签的数据进行培训, 以减少对人类注释的依赖。 然而, 尽管在单句分类任务上取得了巨大成功, 使用未贴标签数据的挑战是给 NLI任务指定“ 足够好” 的伪标签或语义独立。 虽然深层次的学习模型表明NLI任务( 通常为假设), 但其性质更为复杂: 与类标签标签标签标签相关的一个句从数据中缺少, 需要人文说明, 这使得 NLI 的 SSLL 更具挑战性。 在本文中, 我们提出了一个将未贴标签的数据纳入 SS 的 SSLL, 用于使用 有条件的语言模型, BAR 生成未贴标签的伪伪的伪的伪的伪 。 我们的 SLIS 数据库在 4 数据库中 。