Coordinated motion control in swarm robotics aims to ensure the coherence of members in space, i.e., the robots in a swarm perform coordinated movements to maintain spatial structures. This problem can be modeled as a tracking control problem, in which individuals in the swarm follow a target position with the consideration of specific relative distance or orientations. To keep the communication cost low, the PID controller can be utilized to achieve the leader-follower tracking control task without the information of leader velocities. However, the controller's parameters need to be optimized to adapt to situations changing, such as the different swarm population, the changing of the target to be followed, and the anti-collision demands, etc. In this letter, we apply a modified Brain Storm Optimization (BSO) algorithm to an incremental PID tracking controller to get the relatively optimal parameters adaptively for leader-follower formation control for swarm robotics. Simulation results show that the proposed method could reach the optimal parameters during robot movements. The flexibility and scalability are also validated, which ensures that the proposed method can adapt to different situations and be a good candidate for coordinated motion control for swarm robotics in more realistic scenarios.
翻译:群温机器人的协调运动控制旨在确保空间成员的一致性,即群中机器人为维持空间结构而协调移动。这个问题可以模拟为跟踪控制问题,让群中个人在考虑特定相对距离或方向的情况下跟踪目标位置。为了保持通信成本低,可以利用PID控制器实现领导者-追随者跟踪控制任务,而没有领导者速度的信息。然而,需要优化控制者的参数,以适应不断变化的情况,如不同群落人口、要遵循的目标变化以及反螺旋要求等。在本信中,我们采用经修改的脑风暴优化算法,以渐进式PID跟踪控制器获得相对最佳的参数,以适应领导者-追随者对温室机器人的形成控制。模拟结果显示,拟议的方法可以在机器人移动期间达到最佳参数。灵活性和可缩放性也得到验证,确保拟议的方法能够适应不同场景的现实情况,并成为协调机器人运动的良好候选人。