Despite their recent success, machine learning (ML) models such as graph neural networks (GNNs), suffer from drawbacks such as the need for large training datasets and poor performance for unseen cases. In this work, we use transfer learning (TL) approaches to circumvent the need for retraining with large datasets. We apply TL to an existing ML framework, trained to predict multiple crack propagation and stress evolution in brittle materials under Mode-I loading. The new framework, ACCelerated Universal fRAcTure Emulator (ACCURATE), is generalized to a variety of crack problems by using a sequence of TL update steps including (i) arbitrary crack lengths, (ii) arbitrary crack orientations, (iii) square domains, (iv) horizontal domains, and (v) shear loadings. We show that using small training datasets of 20 simulations for each TL update step, ACCURATE achieved high prediction accuracy in Mode-I and Mode-II stress intensity factors, and crack paths for these problems. %case studies (i) - (iv). We demonstrate ACCURATE's ability to predict crack growth and stress evolution with high accuracy for unseen cases involving the combination of new boundary dimensions with arbitrary crack lengths and crack orientations in both tensile and shear loading. We also demonstrate significantly accelerated simulation times of up to 2 orders of magnitude faster (200x) compared to an XFEM-based fracture model. The ACCURATE framework provides a universal computational fracture mechanics model that can be easily modified or extended in future work.


翻译:尽管最近取得了成功,但机器学习(ML)模型,如图形神经网络(GNNNs)等机器学习(ML)模型也存在缺陷,例如需要大型培训数据集,以及无法见案例的性能差等。在这项工作中,我们使用转移学习(TL)方法来绕过用大型数据集进行再培训的需要。我们将TL应用到现有的ML框架,经过培训可以预测模式一下装货中多发裂和易碎材料的压力变化。新的框架(ACCURATE)在模式一和模式二下压力强度因素中实现了高预测准确性,以及这些问题的裂缝路径也非常容易。 未来案例研究(i)-(iv)我们用任意的裂缝长度、(ii)任意的裂缝定向、(iii)平方域、(iv)横向域和(v)剪切装。我们显示,使用小型培训数据集(20个模拟)在模式一和模式二下压力强度因素中实现了高度的预测性准确性。我们展示了AURATER值的快速度和高度压力变化过程的精确度,我们也大大地展示了CREM的快速分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Advances and Open Problems in Federated Learning
Arxiv
17+阅读 · 2019年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员