An ideal projector on the space of polynomials $\mathbb{C} [\mathbf{x}]=\mathbb{C} [x_{1},\ldots ,x_{d}]$ is a projector whose kernel is an ideal in $\mathbb{C}[ \mathbf{x}]$. The question of characterization of ideal projectors that are limits of Lagrange projector was posed by Carl de Boor. In this paper we make a contribution to this problem. Every ideal projector $P$ can be written as a sum of ideal projector $\sum P^{(k)}$ $\ $such that $\cap \ker P^{(k)}$ is a primary decomposition of the ideal $\ker P$. We show that $P$ is a limit of Lagrange projectors if and only if each $P^{(k)}$ is. As an application we construct an ideal projector $P$ whose kernel is a symmetric ideal, yet $P$ is not a limit of Lagrange projectors.
翻译:$\ mathbb{C} [\\ mathbf{x}]\\ mathbb{C}}\\ mathbb{C}}\ mathb{C}}}\ mathbb{C} 理想投影机空间的理想投影机 $\ mathbb{C}} [\ mathbf{x}}\ mathbb{C}}}}\\ mathbb{C} [x*1},\ldots,x*dd}$ 美元 是一个投影机空间的理想投影机 $[$\ mathbb{C} [\ mathbbb{C}] 。 属于 Lagrange 投影机限制的定性问题由 Carl de Boor 提出 。 在本文中,我们为这一问题作出了贡献。 每个理想投影机$P$P$(k}应用我们构建了一个理想的投影机 $P$ $, 但$P$ 并不是项目范围的极限 。