We explore the efficient estimation of statistical quantities, particularly rare event probabilities, for stochastic reaction networks. We propose a novel importance sampling (IS) approach to improve the efficiency of Monte Carlo (MC) estimators when based on an approximate tau-leap scheme. In the IS framework, it is crucial to choose an appropriate change of probability measure for achieving substantial variance reduction. Based on an original connection between finding the optimal IS parameters within a class of probability measures and a stochastic optimal control (SOC) formulation, we propose an automated approach to obtain a highly efficient path-dependent measure change. The optimal IS parameters are obtained by solving a variance minimization problem. We derive an associated backward equation solved by these optimal parameters. Given the challenge of analytically solving this backward equation, we propose a numerical dynamic programming algorithm to approximate the optimal control parameters. To mitigate the curse of dimensionality issue caused by solving the backward equation in the multi-dimensional case, we propose a learning-based method that approximates the value function using a neural network, the parameters of which are determined via stochastic optimization. Our numerical experiments show that our learning-based IS approach substantially reduces the variance of the MC estimator. Moreover, when applying the numerical dynamic programming approach for the one-dimensional case, we obtained a variance that decays at a rate of $\mathcal{O}(\Delta t)$ for a step size of $\Delta t$, compared to $\mathcal{O}(1)$ for a standard MC estimator. For a given prescribed error tolerance, $\text{TOL}$, this implies an improvement in the computational complexity to become $\mathcal{O}(\text{TOL}^{-2})$ instead of $\mathcal{O}(\text{TOL}^{-3})$ when using a standard MC estimator.


翻译:我们探索对统计量的高效估算,特别是{稀有事件概率 { 随机反应网络 { 的统计量 { 稀有事件 { 随机反应网络 。 我们提议一种自动化方法, 以高效路径为根据的测量 } 来提高蒙特卡洛( MC) 估测器的效率。 在 大约tau- leep 方案框架内, 选择适当的概率度量改变以大幅减少差异至关重要 。 根据在概率计量的类别中找到最佳的IS 参数与随机最佳控制( SOC) 配制, 我们提议一种自动方法, 以获得高效路径为主的测量度变化 } 。 最佳IS 参数是通过解决差异最小化问题获得的。 我们从这些最佳参数中得出了一个相关的后向方公式。 鉴于分析解决这个后方程式的挑战, 我们提出一个数字动态程序算算法, 也就是在以美元- 美元( 美元 ) 的轨算法中, 我们用一个数字变数法来减少一个以 。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月22日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员