In this article we focus on dynamic network data which describe interactions among a fixed population through time. We model this data using the latent space framework, in which the probability of a connection forming is expressed as a function of low-dimensional latent coordinates associated with the nodes, and consider sequential estimation of model parameters via Sequential Monte Carlo (SMC) methods. In this setting, SMC is a natural candidate for estimation which offers greater scalability than existing approaches commonly considered in the literature, allows for estimates to be conveniently updated given additional observations and facilitates both online and offline inference. We present a novel approach to sequentially infer parameters of dynamic latent space network models by building on techniques from the high-dimensional SMC literature. Furthermore, we examine the scalability and performance of our approach via simulation, demonstrate the flexibility of our approach to model variants and analyse a real-world dataset describing classroom contacts.


翻译:在本篇文章中,我们注重动态网络数据,以描述固定人口在时间上的相互作用。我们利用潜伏空间框架对这些数据进行模型模型,其中连接的概率表现为与节点相关的低维潜在坐标的函数,并考虑通过Squesttial Monte Carlo(SMC)方法对模型参数进行顺序估计。在这一背景下,SMC是进行估算的自然候选体,比文献中通常考虑的现有方法具有更大的可缩放性,这样可以方便地对估计数进行更新,同时进行更多的观测,并便利在线和离线推理。我们提出了一个新颖的方法,利用高维SMC文献的技术,按顺序推导动态潜伏空间网络模型的参数。此外,我们通过模拟来审查我们的方法的可缩放性和性,展示我们模型变量的方法的灵活性,并分析描述课堂接触的真实世界数据集。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
On Variance Estimation of Random Forests
Arxiv
0+阅读 · 2022年2月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员