In the proposed SEHybridSN model, a dense block was used to reuse shallow feature and aimed at better exploiting hierarchical spatial spectral feature. Subsequent depth separable convolutional layers were used to discriminate the spatial information. Further refinement of spatial spectral features was realized by the channel attention method, which were performed behind every 3D convolutional layer and every 2D convolutional layer. Experiment results indicate that our proposed model learn more discriminative spatial spectral features using very few training data. SEHybridSN using only 0.05 and 0.01 labeled data for training, a very satisfactory performance is obtained.


翻译:在拟议的SEHybridSN模型中,一个密集的区块被用来重新利用浅色特征,目的是更好地利用等级空间光谱特征,随后的深度可分离的相变层被用来区分空间信息,通过频道注意方法对空间光谱特征作了进一步的改进,该方法在每3D层和2D层后进行。实验结果显示,我们提议的模型利用极少的培训数据学习了更具有歧视性的空间光谱特征。SEHybridSN只使用0.05和0.01标记的培训数据,取得了非常令人满意的成绩。

0
下载
关闭预览

相关内容

【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
18+阅读 · 2021年4月27日
专知会员服务
60+阅读 · 2020年3月19日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2022年1月23日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
18+阅读 · 2021年4月27日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员