When analyzing weighted networks using spectral embedding, a judicious transformation of the edge weights may produce better results. To formalize this idea, we consider the asymptotic behavior of spectral embedding for different edge-weight representations, under a generic low rank model. We measure the quality of different embeddings -- which can be on entirely different scales -- by how easy it is to distinguish communities, in an information-theoretic sense. For common types of weighted graphs, such as count networks or p-value networks, we find that transformations such as tempering or thresholding can be highly beneficial, both in theory and in practice.
翻译:在利用光谱嵌入分析加权网络时,明智地转换边重量可能会产生更好的结果。要正式确定这一想法,我们考虑光谱嵌入不同边缘重量表示方式在通用的低级模型下无症状的行为。我们测量不同嵌入方式的质量 -- -- 其规模可能完全不同 -- -- 如何容易区分社区,从信息理论意义上讲。对于普通的加权图表类型,例如计数网络或p价值网络,我们发现温和或临界值等转换在理论和实践上都非常有益。