Machine-part interaction classification is a key capability required by Cyber-Physical Systems (CPS), a pivotal enabler of Smart Manufacturing (SM). While previous relevant studies on the subject have primarily focused on time series classification, change point detection is equally important because it provides temporal information on changes in behavior of the machine. In this work, we address point detection and time series classification for machine-part interactions with a deep Convolutional Neural Network (CNN) based framework. The CNN in this framework utilizes a two-stage encoder-classifier structure for efficient feature representation and convenient deployment customization for CPS. Though data-driven, the design and optimization of the framework are Subject Matter Expertise (SME) guided. An SME defined Finite State Machine (FSM) is incorporated into the framework to prohibit intermittent misclassifications. In the case study, we implement the framework to perform machine-part interaction classification on a milling machine, and the performance is evaluated using a testing dataset and deployment simulations. The implementation achieved an average F1-Score of 0.946 across classes on the testing dataset and an average delay of 0.24 seconds on the deployment simulations.
翻译:机械部分互动分类是智能制造枢纽系统(SM)所需要的关键能力。虽然以前有关该主题的研究主要侧重于时间序列分类,但改变点检测同样重要,因为它提供了有关机器行为变化的时间信息。在这项工作中,我们处理与深层革命神经网络(CNN)为基础的框架进行机器部分互动的点检测和时间序列分类。在这个框架中,CNN使用一个两阶段编码分类结构,为CPS提供高效的特征显示和方便的部署定制。虽然数据驱动,但框架的设计和优化是主题物质专门知识(SME)的指导。中小企业定义的Finite State machine(FSM)被纳入了框架,禁止间歇性分类。在案例研究中,我们实施了对一台磨机进行机器部分互动分类的框架,并使用测试数据集和部署模拟来评估业绩。在测试数据集和部署模拟中,在测试时,每个班的平均F1-S级为0.946,在部署模拟时平均延迟0.24秒。