This work extends the results of [Garde and Hyv\"onen, Math. Comp. 91:1925-1953] on series reversion for Calder\'on's problem to the case of realistic electrode measurements, with both the internal admittivity of the investigated body and the contact admittivity at the electrode-object interfaces treated as unknowns. The forward operator, sending the internal and contact admittivities to the linear electrode current-to-potential map, is first proven to be analytic. A reversion of the corresponding Taylor series yields a family of numerical methods of different orders for solving the inverse problem of electrical impedance tomography, with the possibility to employ different parametrizations for the unknown internal and boundary admittivities. The functionality and convergence of the methods is established only if the employed finite-dimensional parametrization of the unknowns allows the Fr\'echet derivative of the forward map to be injective, but we also heuristically extend the methods to more general settings by resorting to regularization motivated by Bayesian inversion. The performance of this regularized approach is tested via three-dimensional numerical examples based on simulated data. The effect of modeling errors is a focal point of the numerical studies.


翻译:这项工作扩展了[Garde 和 Hyv\'onen, Math. Comp. 91: 1925- 1953] 有关Calder\'on问题的系列反转到现实电极测量的系列问题的结果, 被调查身体的内部接受度和电极- 对象界面的接触接受度都被视为未知。 将内部和接触接受度送至直线电极当前至潜在地图的前端操作员首先被证明是分析性的。 对应的泰勒序列的重新转换产生一系列不同订单的数字方法, 以解决反电阻摄像学问题, 并有可能对未知的内部和边界接受度采用不同的对应性。 只有在使用未知的有限维对应度使远方图的Fr\'echetect 衍生物具有预感知性的情况下, 方法的功能和趋同性首先被证明是分析性的, 但我们的将方法扩大到更一般的环境, 采用由Bayesian 反向驱动的正规化方法, 并有可能对未知的内部和边界接受不同的内部和边界体识别模型进行模拟的模拟模拟模拟数据分析。 模拟的模型的模型的模拟模型的模拟的模拟模型的模拟模型的模拟模型的模拟模型的模拟模型的模拟性效果是模拟模型的模拟的模拟的模拟的模拟的模拟模型的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟模型的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On the Fusion Strategies for Federated Decision Making
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员