Open Radio Access Network (O-RAN) is an emerging paradigm, whereby virtualized network infrastructure elements from different vendors communicate via open, standardized interfaces. A key element therein is the RAN Intelligent Controller (RIC), an Artificial Intelligence (AI)-based controller. Traditionally, all data available in the network has been used to train a single AI model to be used at the RIC. This paper introduces, discusses, and evaluates the creation of multiple AI model instances at different RICs, leveraging information from some (or all) locations for their training. This brings about a flexible relationship between gNBs, the AI models used to control them, and the data such models are trained with. Experiments with real-world traces show how using multiple AI model instances that choose training data from specific locations improve the performance of traditional approaches following the hoarding strategy.
翻译:开放无线电接入网络(O-RAN)是一个新出现的范例,通过这种模式,来自不同供应商的网络基础设施要素通过开放的标准化界面进行虚拟化的网络基础设施要素进行交流,其中的一个关键要素是RAN智能控制器(RIC),这是一个人工智能控制器(AI),传统上,网络中现有的所有数据都用于培训一个单一的AI模式,供ICR使用。本文介绍、讨论和评价在不同区域创建多个AI模式实例,利用来自某些(或所有)地点的信息进行培训,从而在GNB、用于控制这些网络的AI模式和这类模型中培训的数据之间建立灵活的关系。用真实世界的轨迹进行的实验表明,如何使用多个AI模式实例选择特定地点的培训数据,从而改进了根据囤积战略采取的传统方法的绩效。