Improving adversarial robustness of neural networks remains a major challenge. Fundamentally, training a neural network via gradient descent is a parameter estimation problem. In adaptive control, maintaining persistency of excitation (PoE) is integral to ensuring convergence of parameter estimates in dynamical systems to their true values. We show that parameter estimation with gradient descent can be modeled as a sampling of an adaptive linear time-varying continuous system. Leveraging this model, and with inspiration from Model-Reference Adaptive Control (MRAC), we prove a sufficient condition to constrain gradient descent updates to reference persistently excited trajectories converging to the true parameters. The sufficient condition is achieved when the learning rate is less than the inverse of the Lipschitz constant of the gradient of loss function. We provide an efficient technique for estimating the corresponding Lipschitz constant in practice using extreme value theory. Our experimental results in both standard and adversarial training illustrate that networks trained with the PoE-motivated learning rate schedule have similar clean accuracy but are significantly more robust to adversarial attacks than models trained using current state-of-the-art heuristics.


翻译:改善神经网络的对抗性强健性仍是一项重大挑战。 从根本上说,通过梯度下移对神经网络进行培训是一个参数估计问题。 在适应性控制中,保持刺激(PoE)对于确保动态系统中参数估计与其真实值的趋同不可或缺。我们表明,梯度下移的参数估计可以作为适应性线性线性时间变化连续系统的抽样模型进行模拟。我们利用这一模型,并在示范性参考适应控制(MRAC)的启发下,证明我们有足够的条件限制梯度下移更新,以提及持续兴奋的轨迹与真实值相融合。当学习率低于利普施茨损失函数的逆常数时,就有足够的条件实现了。我们提供了一种有效的技术,用以利用极端值理论估计相应的利普施茨实践常数。我们在标准培训和对抗性培训中得出的实验结果表明,受PoE动机学习率表培训的网络的准确性相似,但对于对抗性攻击的强度大大高于使用当前状态超常数模型。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
42+阅读 · 2020年8月2日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
5+阅读 · 2018年2月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
5+阅读 · 2018年2月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员