\emph{Uncertain Graph} (also known as \emph{Probabilistic Graph}) is a generic model to represent many real\mbox{-}world networks from social to biological. In recent times analysis and mining of uncertain graphs have drawn significant attention from the researchers of the data management community. Several noble problems have been introduced and efficient methodologies have been developed to solve those problems. Hence, there is a need to summarize the existing results on this topic in a self\mbox{-}organized way. In this paper, we present a comprehensive survey on uncertain graph mining focusing on mainly three aspects: (i) different problems studied, (ii) computational challenges for solving those problems, and (iii) proposed methodologies. Finally, we list out important future research directions.
翻译:\ emph{ 不确定图表} (又称 \ emph{ 概率图 }) 是一个通用模型,代表社会到生物的许多真实的/mbox{- } 世界网络。 近期对不确定的图表的分析和挖掘引起了数据管理界研究人员的极大关注。 引入了几个高尚的问题,并开发了解决这些问题的有效方法。 因此,有必要以自我\ mbox{ - 组织的方式总结关于这个主题的现有结果。 在本文中,我们介绍了关于不确定的图表采矿的全面调查,主要侧重于三个方面:(一) 所研究的不同问题,(二) 解决这些问题的计算挑战,以及(三) 拟议的方法。 最后,我们列举了重要的未来研究方向。