Bundling crossings is a strategy which can enhance the readability of drawings. In this paper we consider good drawings, i.e., we require that any two edges have at most one common point which can be a common vertex or a crossing. Our main result is that there is a polynomial time algorithm to compute an 8-approximation of the bundled crossing number of a good drawing (up to adding a term depending on the facial structure of the drawing). In the special case of circular drawings the approximation factor is 8 (no extra term), this improves upon the 10-approximation of Fink et al. (Bundled crossings in embedded graphs, Proc. Latin'16). Our approach also works with the same approximation factor for families of pseudosegments, i.e., curves intersecting at most once. We also show how to compute a 9/2-approximation when the intersection graph of the pseudosegments is bipartite.
翻译:捆绑交叉点是一种能够提高绘图可读性的战略。 在本文中, 我们考虑的是好的绘图, 也就是说, 我们要求任何两个边缘最多有一个共同点, 可以是一个共同的顶点或者一个交叉点。 我们的主要结果是, 一个多元时间算法可以计算一个好的绘图捆绑的交叉点数的8 度( 最多加上一个取决于绘图面部结构的术语 ) 。 在圆形绘图的特殊情况下, 近似系数是 8 度( 没有额外的术语 ), 这在 Fink 等人的10 度相近点( 嵌式图形中的交叉点, Proc. Latin' 16 ) 上有所改进。 我们的方法对于一个假形的组合, 即最多一次的曲线交叉也使用相同的近似系数 。 当伪形的交叉图是双形时, 我们还展示了如何计算一个 9/2 相近点 。