The optimal dynamic treatment rule (ODTR) framework offers an approach for understanding which kinds of patients respond best to specific treatments -- in other words, treatment effect heterogeneity. Recently, there has been a proliferation of methods for estimating the ODTR. One such method is an extension of the SuperLearner algorithm -- an ensemble method to optimally combine candidate algorithms extensively used in prediction problems -- to ODTRs. Following the "causal roadmap," we causally and statistically define the ODTR and provide an introduction to estimating it using the ODTR SuperLearner. Additionally, we highlight practical choices when implementing the algorithm, including choice of candidate algorithms, metalearners to combine the candidates, and risk functions to select the best combination of algorithms. Using simulations, we illustrate how estimating the ODTR using this SuperLearner approach can uncover treatment effect heterogeneity more effectively than traditional approaches based on fitting a parametric regression of the outcome on the treatment, covariates and treatment-covariate interactions. We investigate the implications of choices in implementing an ODTR SuperLearner at various sample sizes. Our results show the advantages of: (1) including a combination of both flexible machine learning algorithms and simple parametric estimators in the library of candidate algorithms; (2) using an ensemble metalearner to combine candidates rather than selecting only the best-performing candidate; (3) using the mean outcome under the rule as a risk function. Finally, we apply the ODTR SuperLearner to the "Interventions" study, an ongoing randomized controlled trial, to identify which justice-involved adults with mental illness benefit most from cognitive behavioral therapy (CBT) to reduce criminal re-offending.
翻译:最佳动态治疗规则(ODTR)框架提供了一种理解方法,以了解哪种病人最能应对特定治疗,换句话说,治疗效应异质性。最近,估算ODTR的方法激增。其中一种方法是SUPLearner算法的延伸 -- -- 一种将预测问题中广泛使用的候选算法最佳结合到ODTR的混合方法。在“结果路线图”之后,我们以因果和统计方式定义了ODTR,并提供了使用ODTR SuperLearner来估计它的实际选择。此外,我们强调实施算法时的实际选择,包括选择候选人的算法、金属采集者来合并,以及选择算法的最佳组合。我们用SUPERLearner算法来估计ODTR,比传统方法更能发现治疗、变异和治疗变异性互动的结果。我们调查了选择ODTR规则的最佳选择影响,在选择候选者进行最灵活的算法研究时,我们用SUPLILA的计算结果,在各种抽样分析算法中,我们用Oralalalalalalal 学习结果。