Recent development in data-driven decision science has seen great advances in individualized decision making. Given data with individual covariates, treatment assignments and outcomes, researchers can search for the optimal individualized treatment rule (ITR) that maximizes the expected outcome. Existing methods typically require initial estimation of some nuisance models. The double robustness property that can protect from misspecification of either the treatment-free effect or the propensity score has been widely advocated. However, when model misspecification exists, a doubly robust estimate can be consistent but may suffer from downgraded efficiency. Other than potential misspecified nuisance models, most existing methods do not account for the potential problem when the variance of outcome is heterogeneous among covariates and treatment. We observe that such heteroscedasticity can greatly affect the estimation efficiency of the optimal ITR. In this paper, we demonstrate that the consequences of misspecified treatment-free effect and heteroscedasticity can be unified as a covariate-treatment dependent variance of residuals. To improve efficiency of the estimated ITR, we propose an Efficient Learning (E-Learning) framework for finding an optimal ITR in the multi-armed treatment setting. We show that the proposed E-Learning is optimal among a regular class of semiparametric estimates that can allow treatment-free effect misspecification. In our simulation study, E-Learning demonstrates its effectiveness if one of or both misspecified treatment-free effect and heteroscedasticity exist. Our analysis of a Type 2 Diabetes Mellitus (T2DM) observational study also suggests the improved efficiency of E-Learning.
翻译:数据驱动决策科学的近期发展在个人化决策方面取得了巨大进步。根据个人共变、治疗任务和结果的数据,研究人员可以寻找最佳个人化治疗规则(ITR),以最大限度地实现预期结果。现有方法通常要求初步估计某些骚扰模式。可以防止无治疗效应或偏差分的偏差的双重稳健性属性得到了广泛倡导。但是,当模型存在偏差时,双重稳健的估算可能是一致的,但可能因效率的降低而受到影响。除了潜在的错误描述干扰模型之外,大多数现有方法并不说明当结果差异在共变和治疗之间各不相同时可能出现的问题。我们发现,这种偏差性属性可能会大大影响最佳无治疗效应或偏差度分的估算效率。在本文中,我们证明,错误描述无治疗效应和超常性评估的后果可以统一为自由处理根据残余值的差异。为了提高估计的ITR效率,我们建议采用一种高效的学习方法(E-L-L-L)在计算结果中,我们建议采用一种最准确的不偏差性的成本处理框架,以便定期显示一个最优的ITR(I-L-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I