In this work we introduce a new framework for multi-objective Bayesian optimisation where the multi-objective functions can only be accessed via choice judgements, such as ``I pick options A,B,C among this set of five options A,B,C,D,E''. The fact that the option D is rejected means that there is at least one option among the selected ones A,B,C that I strictly prefer over D (but I do not have to specify which one). We assume that there is a latent vector function f for some dimension $n_e$ which embeds the options into the real vector space of dimension n, so that the choice set can be represented through a Pareto set of non-dominated options. By placing a Gaussian process prior on f and deriving a novel likelihood model for choice data, we propose a Bayesian framework for choice functions learning. We then apply this surrogate model to solve a novel multi-objective Bayesian optimisation from choice data problem.
翻译:在这项工作中,我们引入了一个多目标贝叶斯优化的新框架,即多目标函数只能通过选择判断才能获取,例如“I 选择选项A、B、C,这组选项A、C、D、E'”。选择D被否决的事实意味着,在选定的选项A、B、C中至少有一个选项我严格偏爱于D(但我不必具体说明哪个)。我们假设,某些维维存在潜在的矢量函数ff, 将选项嵌入维度正向量空间 n,因此,选择组可以通过一套非主导选项的Pareto代表。通过将高斯进程放在f之前,并产生一个选择数据的新的可能性模型,我们提出一个贝叶斯框架用于选择功能学习。然后我们应用这个代金模型来解决选择数据问题中的新颖的多目标巴伊西亚选择。