Endoscopic Sinus and Skull Base Surgeries (ESSBSs) is a challenging and potentially dangerous surgical procedure, and objective skill assessment is the key components to improve the effectiveness of surgical training, to re-validate surgeons' skills, and to decrease surgical trauma and the complication rate in operating rooms. Because of the complexity of surgical procedures, the variation of operation styles, and the fast development of new surgical skills, the surgical skill assessment remains a challenging problem. This work presents a novel Gaussian Process Learning-based heuristic automatic objective surgical skill assessment method for ESSBSs. Different with classical surgical skill assessment algorithms, the proposed method 1) utilizes the kinematic features in surgical instrument relative movements, instead of using specific surgical tasks or the statistics to assess skills in real-time; 2) provide informative feedback, instead of a summative scores; 3) has the ability to incrementally learn from new data, instead of depending on a fixed dataset. The proposed method projects the instrument movements into the endoscope coordinate to reduce the data dimensionality. It then extracts the kinematic features of the projected data and learns the relationship between surgical skill levels and the features with the Gaussian Process learning technique. The proposed method was verified in full endoscopic skull base and sinus surgeries on cadavers. These surgeries have different pathology, requires different treatment and has different complexities. The experimental results show that the proposed method reaches 100\% prediction precision for complete surgical procedures and 90\% precision for real-time prediction assessment.
翻译:由于外科手术程序的复杂性、手术风格的变异以及新的外科手术技能的迅速发展,外科技能评估仍是一个具有挑战性的问题。这项工作为ESSBS提供了一个新的高斯进程基于超常自动客观外科手术技能评估方法。它与典型的外科技能评估算法不同,拟议方法1 采用外科手术相对动作中的运动特征,而不是使用具体的外科手术任务或统计数据来实时评估技能;2 提供信息反馈,而不是一个总分;3 能够从新数据中逐步学习,而不是依赖固定数据集。这些拟议方法预测仪器进入内科外科手术技能评估的完整度,以降低数据维度。随后,它与典型的外科手术技能评估算法不同,拟议方法1 利用外科手术工具相对运动中的运动特征,而不是使用具体的外科手术任务或统计数据来实时评估技能;2 提供信息反馈,而不是一个总分数;3 能够从新数据中逐步学习,而不是依赖固定数据集。这些拟议方法预测仪器进入内科测试的移动,以降低数据维度。随后,它提取了预测的外科手术精确度评估的精确性特征,其直径直径直径分析方法显示了预测方法的直径直径直径,并学习了直系关系。