Consider a round-robin tournament on n teams, where a winner must be (possibly randomly) selected as a function of the results from the ${n \choose 2}$ pairwise matches. A tournament rule is said to be k-SNM-${\alpha}$ if no set of k teams can ever manipulate the ${k \choose 2}$ pairwise matches between them to improve 2 the joint probability that one of these k teams wins by more than ${\alpha}$. Prior work identifies multiple simple tournament rules that are 2-SNM-1/3 (Randomized Single Elimination Bracket [SSW17], Randomized King of the Hill [SWZZ20], Randomized Death Match [DW21]), which is optimal for k = 2 among all Condorcet-consistent rules (that is, rules that select an undefeated team with probability 1). Our main result establishes that Randomized Death Match is 3-SNM-(31/60), which is tight (for Randomized Death Match). This is the first tight analysis of any Condorcet-consistent tournament rule and at least three manipulating teams. Our proof approach is novel in this domain: we explicitly find the most-manipulable tournament, and directly show that no other tournament can be more manipulable. In addition to our main result, we establish that Randomized Death Match disincentivizes Sybil attacks (where a team enters multiple copies of themselves into the tournament, and arbitrarily manipulates the outcomes of matches between their copies). Specifically, for any tournament, and any team u that is not a Condorcet winner, the probability that u or one of its Sybils wins in Randomized Death Match approaches 0 as the number of Sybils approaches $\infty$.


翻译:考虑在 n 球队中进行圆柱球锦标比赛, 在这种比赛中, 获胜者必须( 可能随机地) 被选为来自 ${n\\ choose 2} 美元 的对配对比赛结果的函数。 如果没有一个球队组合能够操纵${k\ choose 2} 美元 的双向比赛来提高两个球队之间的联合概率, 这些球队中有一个队赢得超过 $ phalpha} 。 先前的工作将确定多个简单的比赛规则, 它们是 2- SNM-1/3 ( 兰度化的单一消除裂纹[ SSSSW17] 、 山牌的随机化国王 [SWZZ20] 、 随机化的死亡比赛 [DW21] 。 据说比赛规则是 k= 2 最佳的 k 球队 。 规则选择一个未跌落选的球队 。 我们的主要结果是 3- sneckal- flicker, 这个球队可以直接找到任何可调的比数 。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员