We study the two-player communication problem of determining whether two vertices $x, y$ are nearby in a graph $G$, with the goal of determining the graph structures that allow the problem to be solved with a constant-cost randomized protocol. Equivalently, we consider the problem of assigning constant-size random labels (sketches) to the vertices of a graph, which allow adjacency, exact distance thresholds, or approximate distance thresholds to be computed with high probability from the labels. Our main results are that, for monotone classes of graphs: constant-size adjacency sketches exist if and only if the class has bounded arboricity; constant-size sketches for exact distance thresholds exist if and only if the class has bounded expansion; constant-size approximate distance threshold (ADT) sketches imply that the class has bounded expansion; any class of constant expansion (i.e. any proper minor closed class) has constant-size ADT sketches; and a class may have arbitrarily small expansion without admitting constant-size ADT sketches.


翻译:我们研究两个玩家沟通问题,即确定两个顶点($x, y$)是否接近于一个G$,目的是确定能够以不变成本随机协议解决问题的图形结构。同样,我们考虑将固定规模随机标签(skechets)分配给一个图的顶点,允许从标签中以高概率计算相近、准确距离阈值或近似距离阈值。我们的主要结果是,单质类图表:常量相邻草图存在,如果并且只有在该类已经捆绑了偏差;只有该类已经捆绑了准确距离阈值的固定规模草图存在;固定规模的近似距离阈值(ADT)意味着该类已经捆绑了扩张;任何持续扩张的类别(即任何适当的小型封闭类)都有固定规模的ADT草图;以及一个类可能不经承认固定规模的ADT草图而任意小幅扩展。</s>

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员