The statistical analysis of import/export data is helpful to understand the mechanism that determines exchanges in an economic network. The probability of having a commercial relationship between two countries often depends on some unobservable (or not easy-to-measure) factors, like socio-economical conditions, political views, level of the infrastructures. To conduct inference on this type of data, we introduce a novel class of latent variable models for multiview networks, where a multivariate latent Gaussian variable determines the probabilistic behavior of the edges. We label our model the Graph Generalized Linear Latent Variable Model (GGLLVM) and we base our inference on the maximization of the Laplace-approximated likelihood. We call the resulting M-estimator the Graph Laplace-Approximated Maximum Likelihood Estimator (GLAMLE) and we study its statistical properties. Numerical experiments on simulated networks illustrate that the GLAMLE yields fast and accurate inference. A real data application to commodities trading in Central Europe countries unveils the import/export propensity that each node of the network has toward other nodes, along with additional information specific to each traded commodity.
翻译:对进出口数据进行统计分析有助于理解确定经济网络中交流的机制。两国之间商业关系的概率往往取决于一些不可观察(或不易计量)因素,如社会经济条件、政治观点和基础设施水平。为了对这种数据进行推断,我们为多视图网络引入了新型的潜在变量模型类别,其中多变量潜伏高斯变量决定边缘的概率行为。我们将模型标出通用线性边端变量模型(GGLLLLVM),我们根据最大程度实现拉位(或不易计量)近似可能性来作出推断。我们将由此产生的M估计数字称为拉位-接近最大类似模拟器(GLAMLE),我们研究其统计属性。模拟网络的数值实验表明GLAMLE生成快速和准确的推论。中欧各国商品贸易中真实数据应用显示每个网络的进出口偏差,每个网络与其他特定商品没有其他信息,每个网络与其他特定商品没有关联。