This paper explores the task of detecting images generated by text-to-image diffusion models. To evaluate this, we consider images generated from captions in the MSCOCO and Wikimedia datasets using two state-of-the-art models: Stable Diffusion and GLIDE. Our experiments show that it is possible to detect the generated images using simple Multi-Layer Perceptrons (MLPs), starting from features extracted by CLIP, or traditional Convolutional Neural Networks (CNNs). We also observe that models trained on images generated by Stable Diffusion can detect images generated by GLIDE relatively well, however, the reverse is not true. Lastly, we find that incorporating the associated textual information with the images rarely leads to significant improvement in detection results but that the type of subject depicted in the image can have a significant impact on performance. This work provides insights into the feasibility of detecting generated images, and has implications for security and privacy concerns in real-world applications.
翻译:本文探索了探测文本到图像扩散模型产生的图像的任务。 为了评估这一点, 我们考虑使用两种最先进的模型( 稳定传播和 GLIDE) 来检测 MSCO 和 Wikimedia 数据集中的字幕生成的图像。 我们的实验显示, 使用简单的多层感应器( MLPs) 来检测生成的图像是可能的, 开始于 CLIP 或传统革命神经网络( CNNs) 所提取的特征。 我们还观察到, 受培训的关于稳定传播生成图像的模型能够相对地探测 GLIDE 生成的图像, 但是, 反向情况并非如此。 最后, 我们发现, 将相关文本信息与图像相结合很少能显著改进检测结果, 但图像中所描述的主体类型能对性能产生重大影响。 这项工作为探测生成图像的可行性提供了深刻的洞察, 并且对现实世界应用中的安全和隐私问题产生影响。</s>