Point clouds produced by 3D scanning are often sparse, non-uniform, and noisy. Recent upsampling approaches aim to generate a dense point set, while achieving both distribution uniformity and proximity-to-surface, and possibly amending small holes, all in a single network. After revisiting the task, we propose to disentangle the task based on its multi-objective nature and formulate two cascaded sub-networks, a dense generator and a spatial refiner. The dense generator infers a coarse but dense output that roughly describes the underlying surface, while the spatial refiner further fine-tunes the coarse output by adjusting the location of each point. Specifically, we design a pair of local and global refinement units in the spatial refiner to evolve a coarse feature map. Also, in the spatial refiner, we regress a per-point offset vector to further adjust the coarse outputs in fine-scale. Extensive qualitative and quantitative results on both synthetic and real-scanned datasets demonstrate the superiority of our method over the state-of-the-arts.


翻译:由 3D 扫描产生的点云往往稀少、不统一和吵闹。 最近的抽样方法旨在生成一个密度点集,同时实现分布统一和接近地表,并有可能在一个网络中修正小孔。 在重新审视任务后,我们提议根据其多客观性质将任务分解开来,并开发两个级联的子网络,一个稠密的发电机和一个空间精炼器。 密度发电机推断出粗糙但密集的输出,大致描述底表,而空间精炼者则通过调整每个点的位置进一步微调粗糙的产出。 具体地说,我们在空间精炼器中设计了一对本地和全球的精炼装置,以发展粗细的地貌图。 在空间精炼器中,我们再研究一个点抵消矢量的矢量,以进一步细化地调整粗糙的输出。 合成和真实扫描的数据集在质量和数量上的广泛结果显示我们的方法优于状态。

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员