It is common to use networks to encode the architecture of interactions between entities in complex systems in the physical, biological, social, and information sciences. Moreover, to study the large-scale behavior of complex systems, it is important to study mesoscale structures in networks as building blocks that influence such behavior. In this paper, we present a new approach for describing low-rank mesoscale structure in networks, and we illustrate our approach using several synthetic network models and empirical friendship, collaboration, and protein--protein interaction (PPI) networks. We find that these networks possess a relatively small number of `latent motifs' that together can successfully approximate most subnetworks at a fixed mesoscale. We use an algorithm that we call "network dictionary learning" (NDL), which combines a network sampling method and nonnegative matrix factorization, to learn the latent motifs of a given network. The ability to encode a network using a set of latent motifs has a wide range of applications to network-analysis tasks, such as comparison, denoising, and edge inference. Additionally, using our new network denoising and reconstruction (NDR) algorithm, we demonstrate how to denoise a corrupted network by using only the latent motifs that one learns directly from the corrupted networks.
翻译:通常使用网络来规范物理、生物、社会和信息科学复杂系统中实体之间的互动结构。此外,为了研究复杂系统大规模的行为,必须研究网络中的中间结构,作为影响这种行为的构件。在本文中,我们提出了一个描述网络中中中小型结构的新方法,我们用几种合成网络模型和经验的友谊、协作和蛋白质-蛋白质互动网络来说明我们的方法。我们发现这些网络拥有相对较少的“相对的”“相对的”模型,它们可以一起成功地在固定的中间尺度上接近大多数子网络。我们使用一种算法,我们称之为“网络字典学习”(NDL),它把网络抽样方法和非负缩缩缩矩阵因子化结合起来,以学习某个特定网络的潜在模型。使用一套潜在模型对网络进行编码的能力在网络分析任务上有着广泛的应用,例如比较、消音和边缘,这样可以成功地在固定的中间尺度上接近大多数子网络。我们使用一种称为“网络词典学习”的算法,我们称之为“网络词典学习”(NDL),它把网络的网络的缩缩图象学成和再通过一种腐败的网络来显示一个腐败的模型。