We propose a flexible power method for computing the leftmost, i.e., algebraically smallest, eigenvalue of an infinite dimensional tensor eigenvalue problem, $H x = \lambda x$, where the infinite dimensional symmetric matrix $H$ exhibits a translational invariant structure. We assume the smallest eigenvalue of $H$ is simple and apply a power iteration of $e^{-H}$ with the eigenvector represented in a compact way as a translational invariant infinite Tensor Ring (iTR). Hence, the infinite dimensional eigenvector can be represented by a finite number of iTR cores of finite rank. In order to implement this power iteration, we use a small parameter $t$ so that the infinite matrix-vector operation $e^{-Ht}x$ can efficiently be approximated by the Lie product formula, also known as Suzuki--Trotter splitting, and we employ a low rank approximation through a truncated singular value decomposition on the iTR cores in order to keep the cost of subsequent power iterations bounded. We also use an efficient way for computing the iTR Rayleigh quotient and introduce a finite size iTR residual which is used to monitor the convergence of the Rayleigh quotient and to modify the timestep $t$. In this paper, we discuss 2 different implementations of the flexible power algorithm and illustrate the automatic timestep adaption approach for several numerical examples.
翻译:我们提出一个灵活的动力方法来计算最左侧的值, 即, 代数最小, 无限维度 Exmonor egenvaly 问题的天平值, $H x =\ lambda x$, 无限维对称矩阵 $H$ 显示一个翻译性变异结构。 我们假设最小的 $H 值是简单的, 并且使用一个最小的 $_ - H} 的电源转换法, 以缩略式方式表示的 eigenvictor 。 因此, 无限的天平比值可以由数量有限的 iTR 定级的 iTR 核心表示 。 为了执行这一功能, 我们使用一个小参数 $@ {- Ht}x, 这样, 无限的矩阵- 操作可以被Li 产品公式( 也称为 Suzuki- Trotter ) 分解, 并且我们使用一个低级的 校正调的 Excolent 值 Excial decomfile lical excial explace 。 iTR 用于 iTR trireal tritraal trial trial 。