Millimeter wave (mmWave) is a key technology for fifth-generation (5G) and beyond communications. Hybrid beamforming has been proposed for large-scale antenna systems in mmWave communications. Existing hybrid beamforming designs based on infinite-resolution phase shifters (PSs) are impractical due to hardware cost and power consumption. In this paper, we propose an unsupervised-learning-based scheme to jointly design the analog precoder and combiner with low-resolution PSs for multiuser multiple-input multiple-output (MU-MIMO) systems. We transform the analog precoder and combiner design problem into a phase classification problem and propose a generic neural network architecture, termed the phase classification network (PCNet), capable of producing solutions of various PS resolutions. Simulation results demonstrate the superior sum-rate and complexity performance of the proposed scheme, as compared to state-of-the-art hybrid beamforming designs for the most commonly used low-resolution PS configurations.
翻译:毫米波(mmWave)是第五代(5G)及以后通信的一项关键技术。混合波束已经建议用于毫米波段通信中的大型天线系统。基于无限分辨率相位转换器(PS)的现有混合波束成型设计由于硬件成本和电耗而不切实际。在本文件中,我们提出了一个未经监督的基于学习的计划,以联合设计模拟预译器,并与多用户多输入多输出(MU-MIMO)系统的低分辨率 PS组合。我们把模拟预译器和组合设计问题转化成一个阶段分类问题,并提出一个通用神经网络结构,称为阶段分类网络(PCNet),能够产生各种PS分辨率的解决方案。模拟结果表明,与最常用的低分辨率 PS配置的尖端混合组合设计相比,拟议方案的超强总率和复杂性能。