Crowd counting in single-view images has achieved outstanding performance on existing counting datasets. However, single-view counting is not applicable to large and wide scenes (e.g., public parks, long subway platforms, or event spaces) because a single camera cannot capture the whole scene in adequate detail for counting, e.g., when the scene is too large to fit into the field-of-view of the camera, too long so that the resolution is too low on faraway crowds, or when there are too many large objects that occlude large portions of the crowd. Therefore, to solve the wide-area counting task requires multiple cameras with overlapping fields-of-view. In this paper, we propose a deep neural network framework for multi-view crowd counting, which fuses information from multiple camera views to predict a scene-level density map on the ground-plane of the 3D world. We consider three versions of the fusion framework: the late fusion model fuses camera-view density map; the naive early fusion model fuses camera-view feature maps; and the multi-view multi-scale early fusion model ensures that features aligned to the same ground-plane point have consistent scales. A rotation selection module further ensures consistent rotation alignment of the features. We test our 3 fusion models on 3 multi-view counting datasets, PETS2009, DukeMTMC, and a newly collected multi-view counting dataset containing a crowded street intersection. Our methods achieve state-of-the-art results compared to other multi-view counting baselines.


翻译:单视图像中的人群计数在现有的计数数据集上取得了杰出的成绩。 然而,单视计数不适用于大片和大片场景(如公共公园、长地铁平台或活动空间),因为单个相机无法足够详细地记录整个场景以进行计数,例如,当场景太大,无法与摄影机的实地视图相容时,时间太长,以致在遥远的人群中分辨率太低,或者有太多的大型物体在人群中隐蔽。因此,要解决广区域计数任务,需要多摄像头和重叠的多视场。在本文中,我们提议一个深视神经网络框架,用于多视人群计数,将多摄像头观点的信息集中起来,以预测3D世界地面平板上的场水平密度图。我们考虑了三个版本的混集框架:迟聚模型连接了摄像群-视野密度地图;天速早期混凝模模模模集模型的摄像场特征地图;多视多视多视场的早期组合早期模型,确保我们连续进行3个数据轮换的模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
已删除
将门创投
4+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
已删除
将门创投
4+阅读 · 2018年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员