In 2017, Polyanskiy [1] showed that the trade-off between power and bandwidth efficiency for massive Gaussian random access is governed by two fundamentally different regimes: low power and high power. For both regimes, tight performance bounds were found by Zadik et al. [2], in 2019. This work utilizes recent results on the exact block error probability of Gaussian random codes in additive white Gaussian noise to propose practical methods based on iterative soft decoding to closely approach the bounds in [2]. In the low power regime, this work finds that orthogonal random codes can be applied directly. In the high power regime, a more sophisticated effort is needed. This work shows that power-profile optimization by means of linear programming as pioneered by Caire et al. [3], in 2001, is a promising strategy to apply. The proposed combination of orthogonal random coding and iterative soft decoding even outperforms the existence bounds of Zadik et al. [2] in the low power regime and is very close to the non-existence bounds for message lengths around 100 and above. Finally, the approach of power optimization by linear programming proposed for the high power regime is found to benefit from power imbalances due to fading which makes is even more attractive for typical mobile radio channels.


翻译:2017年,Polyanskiy [1] 2017年,Polyanskiy [1] 显示,大规模高斯随机接入的电力和带宽效率的权衡由两个根本不同的制度决定:低权力和高权力。对于两个政权来说,Zadik等人[2]在2019年发现了严格的性能界限。这项工作利用了高萨随机代码在添加的白色高巴噪音中的准确区块差差概率的最新结果,提出了基于迭接软解码的实用方法,以接近[2]的界限。在低权力制度中,这项工作发现可以直接适用正方随机代码。在高权力制度中,需要更精密的努力。这项工作表明,Caire 等人率先采用的线性编程手段对电力的优化。[3] 2001年,这是一个有希望适用的策略。拟议中的“高调随机编码”和迭接软解码组合,甚至超越了Zadik等人的存在界限。在低权力制度中,这种低权力制度下,非常接近于无法存在的信息长度界限。在高权力制度中,因此,需要更精密地努力。通过直截式的电压式的电压方法,最终从100和上实现。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员