Intelligent reflecting surface (IRS) is deemed as a promising solution to improve the spectral and energy efficiency of wireless communications cost-effectively. In this paper, we consider a wireless network where multiple base stations (BSs) serve their respective users with the aid of distributed IRSs in the downlink communication. Specifically, each IRS assists in the transmission from its associated BS to user via passive beamforming, while in the meantime, it also randomly scatters the signals from other co-channel BSs, thus resulting in additional signal as well as interference paths in the network. As such, a new IRS-user/BS association problem arises pertaining to optimally balance the passive beamforming gains from all IRSs among different BS-user communication links. To address this new problem, we first derive a tractable lower bound of the average signal-to-interference-plus-noise ratio (SINR) at the receiver of each user, termed average-signal-to-average-interference-plus-noise ratio (ASAINR), based on which two ASAINR balancing problems are formulated to maximize the minimum ASAINR among all users by optimizing the IRS-user associations without and with BS transmit power control, respectively. We also characterize the scaling behavior of user ASAINRs with the increasing number of IRS reflecting elements to investigate the different effects of IRS-reflected signal versus interference power. Moreover, to solve the two ASAINR balancing problems that are both non-convex optimization problems, we propose an optimal solution to the problem without BS power control and low-complexity suboptimal solutions to both problems by applying the branch-and-bound method and exploiting new properties of the IRS-user associations, respectively. Numerical results verify our performance analysis and also demonstrate significant performance gains of the proposed solutions over benchmark schemes.


翻译:智能反射表面(IRS)被认为是提高无线通信光谱和能源效率的有希望的解决方案,具有成本效益。在本文中,我们认为一个无线网络,多基站(BS)借助分布式IRS在下行通信中为各自的用户提供服务。具体地说,每个IRS协助通过被动波束化从相关的BS向用户传输,而与此同时,它也随机分散来自其他联合频道BS的信号,从而导致网络中更多的信号和干扰路径。因此,出现了一个新的IRS用户/BS联系问题,即,如何最好地平衡不同BS用户通信链接中所有IRS的被动成形收益。为了解决这个新问题,我们首先在每一个用户的接收器上获得一个可移动的信号对干涉加音率平均比例(SINR),将平均信号对平均的调和平均调和调频率的比率(ASAIRR),在此基础上,两个AIS-S的平衡式解决方案与不使用两种非正式解决方案,将AIS的内压性能分别对AIS系统进行最大程度的自动分析。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
42+阅读 · 2020年12月18日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
VIP会员
相关资讯
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Top
微信扫码咨询专知VIP会员