In this work, we introduce the Gulliver multi-party computation model (GMPC). The GMPC model considers a single highly powerful party, called the server or Gulliver, that is connected to $n$ users over a star topology network (alternatively formulated as a full network, where the server can block any message). The users are significantly less powerful than the server, and, in particular, should have both computation and communication complexities that are polylogarithmic in $n$. Protocols in the GMPC model should be secure against malicious adversaries that may corrupt a subset of the users and/or the server. Designing protocols in the GMPC model is a delicate task, since users can only hold information about polylog(n) other users (and, in particular, can only communicate with polylog(n) other users). In addition, the server can block any message between any pair of honest parties. Thus, reaching an agreement becomes a challenging task. Nevertheless, we design generic protocols in the GMPC model, assuming that at most $\alpha<1/6$ fraction of the users may be corrupted (in addition to the server). Our main contribution is a variant of Feige's committee election protocol [FOCS 1999] that is secure in the GMPC model. Given this tool we show: 1. Assuming fully homomorphic encryption (FHE), any computationally efficient function with $O\left(n\cdot polylog(n)\right)$-size output can be securely computed in the GMPC model. 2. Any function that can be computed by a circuit of $O(polylog(n))$ depth, $O\left(n\cdot polylog(n)\right)$ size, and bounded fan-in and fan-out can be securely computed in the GMPC model without assuming FHE. 3. In particular, sorting can be securely computed in the GMPC model without assuming FHE. This has important applications for the shuffle model of differential privacy, and resolves an open question of Bell et al. [CCS 2020].
翻译:在本工作中,我们引入了吉列尔多方计算模型 (GMPC)。GMPC模型考虑一个单个极具强大的参与方,称为服务器或者吉列尔,该服务器通过星形拓扑网络与 $n$ 个用户相连 (或者替代性地表示为全网络,其中服务器可以阻止任何消息)。这些用户明显比服务器不够强大,并且特别地,应该具有计算和通信复杂度,其为 $n$ 的多项式对数级别。GMPC模型中的协议应该是安全的,针对有可能对一部分用户和/或服务器进行腐败的恶意对手。在GMPC模型中设计协议是一项艰巨的任务,因为用户只能持有与其他不超过多项式对数数量的用户相关信息(并且特别地,只能与与其他多项式对数数量的用户通信)。此外,服务器可以拦截任意对诚实方之间的消息。因此,达成协议成为了一项具有挑战性的任务。然而,我们设计了 GMPC 模型中的通用协议,假设最多 $\alpha<1/6$ 部分的用户可能会被腐败(除服务器外)。我们的主要贡献是 Feige 的委员会选举协议的变种 [FOCS 1999],该协议在 GMPC 模型中是安全的。在此工具的基础上,我们展示了以下内容:1. 假设完全同态加密 (FHE),任何具有 $O\left(n\cdot polylog(n)\right)$-size 输出的计算效率函数可以在 GMPC 模型中安全计算。2. 任何可以被具有 $O(polylog(n))$ 深度、 $O\left(n\cdot polylog(n)\right)$ 大小和有界fan-in和fan-out的电路计算的函数都可以在不假设 FHE 的情况下在 GMPC 模型中安全计算。3. 特别地,排序可以在不假设 FHE 的情况下在 GMPC 模型中安全计算。这在差分隐私的混洗模型中具有重要应用,并解决了 Bell 等人 [CCS 2020] 的一个悬而未决的问题。