In recent years, machine learning algorithms have been applied widely in various fields such as health, transportation, and the autonomous car. With the rapid developments of deep learning techniques, it is critical to take the security concern into account for the application of the algorithms. While machine learning offers significant advantages in terms of the application of algorithms, the issue of security is ignored. Since it has many applications in the real world, security is a vital part of the algorithms. In this paper, we have proposed a mitigation method for adversarial attacks against machine learning models with an autoencoder model that is one of the generative ones. The main idea behind adversarial attacks against machine learning models is to produce erroneous results by manipulating trained models. We have also presented the performance of autoencoder models to various attack methods from deep neural networks to traditional algorithms by using different methods such as non-targeted and targeted attacks to multi-class logistic regression, a fast gradient sign method, a targeted fast gradient sign method and a basic iterative method attack to neural networks for the MNIST dataset.


翻译:近年来,机器学习算法在卫生、交通和自主汽车等各个领域广泛应用。随着深层学习技术的迅速发展,在应用算法时必须考虑到安全问题。虽然机器学习在应用算法方面有很大的优势,但安全问题却被忽视。由于机器学习在现实世界中有许多应用,安全是算法的重要组成部分。在本文中,我们提出了一个减缓对机器学习模型进行对抗性攻击的方法,这种模型是自动编码模型的基因化模型之一。对机器学习模型进行对抗性攻击的主要想法是操纵经过训练的模型,产生错误的结果。我们还介绍了自动编码模型的性能,从深神经网络到传统算法的各种攻击方法,采用不同的方法,如非定向和有针对性的攻击到多级后勤回归、快速梯度标志方法、定向快速梯度标志方法、对内线网络进行MNIST数据集的基本迭代方法攻击。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年10月31日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
42+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2020年12月8日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员