A multiple knapsack constraint over a set of items is defined by a set of bins of arbitrary capacities, and a weight for each of the items. An assignment for the constraint is an allocation of subsets of items to the bins which adheres to bin capacities. In this paper we present a unified algorithm that yields efficient approximations for a wide class of submodular and modular optimization problems involving multiple knapsack constraints. One notable example is a polynomial time approximation scheme for Multiple-Choice Multiple Knapsack, improving upon the best known ratio of $2$. Another example is Non-monotone Submodular Multiple Knapsack, for which we obtain a $(0.385-\varepsilon)$-approximation, matching the best known ratio for a single knapsack constraint. The robustness of our algorithm is achieved by applying a novel fractional variant of the classical linear grouping technique, which is of independent interest.


翻译:对一组物品的多重 knapsack 限制由一组任意容量的垃圾桶和每个物品的重量来定义。 限制的指定是将物品的子集分配到符合文件夹容量的垃圾桶。 在本文中, 我们提出了一个统一的算法, 为涉及多个 knapsack 限制的广泛的亚模块和模块优化问题产生有效的近似值。 一个显著的例子就是多hoice 多重Knapsack 的多元时间近似方案, 在已知的2美元比率上有所改进。 另一个例子是 Non-monoone Submodual sumodular multive Knapsack, 我们为此获得一个( 0. 385-\ varepsilon)$- 近似数, 匹配单个 knapsack 约束的已知最佳比率。 我们的算法的强度是通过应用经典线性组合技术的新式的分数变法来实现的, 这是一种独立的兴趣。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
专知会员服务
15+阅读 · 2021年3月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
246 页《统计机器学习与凸优化》教程 PPT 下载
新智元
24+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
11+阅读 · 2021年2月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
246 页《统计机器学习与凸优化》教程 PPT 下载
新智元
24+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员