We study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge, a model calibration problem under both aleatory and epistemic uncertainties. Our methodology is based on an integration of robust optimization, more specifically a recent line of research known as distributionally robust optimization, and importance sampling in Monte Carlo simulation. The main computation machinery in this integrated methodology amounts to solving sampled linear programs. We present theoretical statistical guarantees of our approach via connections to nonparametric hypothesis testing, and numerical performances including parameter calibration and downstream decision and risk evaluation tasks.
翻译:我们研究一种方法来应对美国航天局的Langley不确定性量化挑战,这是一个在感官和感官不确定性下的模型校准问题。我们的方法基于强力优化的整合,更具体地说,是最近在蒙特卡洛模拟中进行的称为分布稳健优化和重要抽样的研究。这一综合方法中的主要计算机制相当于解决抽样线性程序。我们通过与非参数假设测试的联系,以及包括参数校准、下游决定和风险评估任务在内的数字性能,提出了我们方法的理论统计保障。